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Pyrolysis of I-lodopropane by the Variable Encounter Method

F. C. Wolters, t K.-J. Chao t and B. S. Rabinovitch
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Abstract

The pyrolysis of 1-iodopropane has been studied by the

Variable Encounter Method (VEM) at temperatures from 625 K to

840 K. Deactivating wall collisions are found to be stronger

for this molecule than for the hydrocarbons previously studied

in this temperature range. The results of this study are

compared with earlier steady-state work.
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Introduction

The pyrolysis of 1-iodopropane has recently been the subject of a number
1-3

of VLPP studies. The mechanism of the decomposition has been discussed

in detail by these earlier workers. The molecule decomposes by two channels

whose critical reaction thresholds, Eo , differ by 4.3 kcal mole-

C3H71 L C3H6 + HI (Eo = 48.5 kcal mole -l) (1)

C3H 7 -C3H7 + I-- C2H4 +-CH 3 + 1 (Eo = 52.8 kcal mole - ) (2)

In reaction (2), the first step is rate determining.

This chemical system is an attractive one for study by the Variable

Encounter Method (VEM) because it affords an opportunity for comparison of

our results in the transient region with those obtained in steady state VLPP

studies. Moreover, this molecule is the first polar one to be studied by the

VEM technique. Information is desirable concerning the dependence of the

energy transfer process between molecules and the wall upon this parameter.

In this paper we report the study of the pyrolysis of l-iodopropane in

a VEM system at temperatures from 625 K to 840 K. Unfortunately, the system

seems to be not as clean as we had hoped originally.
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Experimental

The experimental apparatus was similar to that used in previous VEM

studies.4'5 Reactor fingers with mean numbers of collisions, m , of 5.9

and 17.5 were used; these were described in ref. 5. Reproducible results

(within the precision of the experiments) were obtained after "seasoning"

the reactors for several hours. The resulting seasoned surface deteriorated

with time when standing under vacuum (unlike our experience with hydrocarbon

substrates 45), or when the system was pumped for long periods, suggesting

that the seasoning film itself was either being slowly pyrolyzed or had an

appreciable vapor pressure.

Matheson-Coleman 1-iodopropane containing no detectible impurities was

thoroughly degassed prior to use. Experiments varied in duration from one

minute to several hours, depending on experimental conditions. The reaction

was allowed to proceed usually from 1 to 30 per cent completion, and an ali-

quot was then taken. The products were analyzed by gas chromatography with

fid detection. Separation of l-iodopropane from its hydrocarbon reaction

products was made on a 12 inch x 3/16 inch packed column consisting of 15%

squalane on 45-60 mesh Chromosorb P. The reaction products were separated

on a 6.5 foot x 3/16 inch column having the same packing.

In order to check for possible secondary reactions involving the radicals

produced by reaction (2), a series of experiments was performed with trans-2-

betene added as a getter. The ratio of iodopropane to butene was varied

between 0.1 to 0.2.

. 4
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Results and Calculations

Experimentally determined values of the mean probability of reaction per

collision, P c(m), by channel (1) are plotted versus temperature in Fig. I for

the two reactors. These results are similar in behavior to those obtained in

previous VEM studies. However, the rate data display somewhat more scatter

(Fig. 2) than those obtained in previous studies and showed greater sensitivity

to the seasoning procedure and history. Systematic fluctuations of \ 50% occur.

Moreover, small amounts of C2 impurities, presumably arising from the decom-

position of the seasoning film, were always present and made it unattractive

to expend much effort on the measurement of reaction rates for reaction (2)

which produces ethylene. Decomposition by thislatter channel is accompanied by

the production of radicals and traces of propane were observed in some of the

high temperature experiments. Some differences (10-30%) in the apparent rate

constants for propylene formation were observed between the experiments with

butene getter and those using neat l-iodopropane (Fig. 2). However, both

negative and positive deviations occur and reflect mainly data scatter.

We note that earlier experimental data obtained in VLPP studies of l-iodopropane

also indicates some apparent experimental complications.2,3 In that work, apart

from scatter in at least some of the data, comparable to that shown here, the

observed k/k 2 ratio decreased (rather than the expected constancy) as the num-

ber of collisions in the reactor increased; also, rates in a 2140-collision

reactor showed a larger temperature dependence than did a 19,950-collision6

reactor. Additionally, reaction (2), unlike reaction (1), was found to show

no dependence on the pressure of added inert bath gas. Not much weight was

placed on these complications by the earlier workers. We believe that although

experimental complications do affect the quantitative precision of the results,

that the general conclusions derived below and based on reaction (1) are
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substantially valid.

The RRKM models employed for reactions (1) and (2) were based on those

reported by Gaynor et al. (2). If molecules were effectively in the second

order region, the only parameter of critical importance would be Eo , the

critical energy for reaction, together with the molecular parameters. However,

l-iodopropane only approaches the second order region under the conditions

used in this study. The fraction of molecules activated above E which react

between collisions is 14% at 691 K and increases to nu 19% at 804 K. The

molecular and activated complex parameters and vibrational frequencies used

are listed in Table I. We have altered Gaynor's frequency factor and reaction

path degeneracy for reaction (1), taking log A. to be 13.0 and L to be 1.5

1-lodopropane has roughly equal probabilities of being in the trans and gauche

forms (6,7); these have reaction path degeneracies for reaction (1) of 2 and

1, respectively. Hence, an overall reaction path degeneracy of 1.5 seems to

us more realistic than the reported value of 0.33. Calculated values of the

microscopic rate constants kE are plotted versus energy in Fig. 3.

The computer simulation of the encounter process has been described else-
4

where. Four models have been used to characterize the probability, pij, of

a down-transition by the molecule, from energy E. to energy E.
5,8

3 *1

Model FE (flat exponential, i.e., <AE> independent of E.):

Pij = A1exp(-AE/<AE>); AE = Ei - Ei

Model FG (flat gaussian, i.e., AE independent of E.)--, mp

p = A2exp(-(AE-AE ) 2/2a2)

Model EB (exponentially weighted Boltzmann):

Pij = A 3N(Ei)exp(Ei/RT)exp(-AE/<AE>);

Model GB (gaussian weighted Boltzmann):

Pij A 4 N(Ei)exp(-Ei/RT)exp(-(AE-AE M) /2
2a );

* A
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The A's are normalization constants, N(Ei) is the density of quantum states

at energy Ei, and <AE>, AEmp and a are parameters of the models. In this calcu-

lation, a was given the value of 0.7 AE mp. For Models FE and FG, a few transi-

tions can occur in principle to energy levels E. < O,and these were simply1

treated as elastic. Alternative treatments were explored and do not affect

present conclusions. Of these models, FE has been shown to be inappropriate

for surfaces that behave as near-strong colliders, as is the case here at the

lower temperatures; results for this model will not be shown. Truncation of

the transition probabilities for AE greater than 18,000 cm-l (i.e. pij = 0 for

AE > 18,000) was employed for most of the computations but gave results essen-

tially identical to those obtained in calculations where no truncation was

employed.

Representative parameters of each of the models which produce a fit to

the 5.9 reactor data are listed in Table 2, and the calculated probabilities

of reactions per collision in a given reactor, P c(m), are listed in Table 2 and

presented in Fig. 1. Also shown is a calculated curve for an ideal strong

collider. The parameters derived from the m = 5.9 fit were then applied to the

calculation of curves for case m = 17 and comparison of these with experiment

is also shown in Fig. 1.

The effective average energy of down-transitions, <AE'> for Models EB and

GB is energy dependent; therefore, in order to characterize these models, the

average energy of down-transitions is presented for the case Ej = 1 Eo (Eo for

*reaction (1)).

*
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Discussion

At lower temperatures (Fig. 1), the P c(m) values for the reactor m = 17.5

appear within experimental uncertainty to be indistinguishable from those for
a true strong collider and correspond to the steady state, i.e., to P ().

The values for the m = 5.9 reactor are a little lower than the strong collider
the

values and show more unequivocally thatAsurface behaves as a rather efficient

collider but only approaches near-strong behavior at temperatures below 700 K.

Models EB and GB, which effectively reproduce strong collider behavior in the

limit of very large values of the relevant parameters (<AE> and AE mp) appear

to give a better fit to the data (Fig. 1) at low temperatures than does FG,

although the scatter in the data is large and this prohibits a decisive con-

clusion.

Despite the experimental uncertainties, it is possible to draw some impor-

tant qualitative conclusions. Once again the trend observed in previous VEM

studies of decreasing step size with increasing temperature is borne out. More

importantly, in its interaction with the wall, this molecule seems to be a much

stronger collider than the hydrocarbon molecules previously studied by VEM in

this temperature range. 4'5'8 We presume that this results from the larger

polarity and stronger attractive molecular potential of the molecule.

We may make a limited comparison of our results with those reported in

VLPP studies of l-iodopropane. 1,3 The highest temperature at which we were

able to obtain reliable data (840 K) is a little lower than the lowest tempera-

ture (850 K) at which the VLPP results were reported. But, while Gaynor, et al.

report that the rates of reactions (1) and (2) are about equal, our calculated

steady state k2/kI ratio (at 805 K) based on the preferred energy transfer

models is much lower, 0.29 or less, as shown in Table 3. In fact, based on our

experiments, 0.29 is also a maximum in our observed experimental ratios. We

are uncertain as to the origin and significance of this difference.

(c
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Table I. Molecular Parameters for RRKM Calculationsa

1-iodopropane Complex (1) Complex (2)

frequencies/cm- 3100(7) 3100(6) 3100(7)

1450(5) 2200 1450(5)

1150(6) 1450(4) 1150(4)

1000(2) 1300 1000(2)

700 1150(7) 700(2)23.

600 1000 400
425(2) 700(2) 200

300 300 130(3)
'200 219(3) 70

70

(IAlIBI C)+/(I AIBI C) -- 2.83 3.09

Lt 1-l.5 l .0

E0/kcal mole -  Eakcal mole -1  log10 (A,/s-
1)

Reaction (1) 48.5 49.5 13.0

Reaction (2) 52.8 55.7 15.5

a) Based on refs. 2 and 3, except as in text

(.I i I Ii
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Table 2. Calculated Values of P c(m) and Parameters of the Energy Transfer Models

T/K Model <AE> or AEmp <AE'> P c(5 .9)a P c(17.5)

690 FG 3740 4136 1.19-7

EB 1370 4 1 13b 5.69-8c  1.27-7

GB 2165 38 84b 1.27-7

805 FG 2730 3012 7 6.38-6

EB 1335 266 4b 2.62-6 7.07-6

GB 1895 288 8b 7.08-6

a) Models fitted to the experimental values for m 5.9.

b) This quantity is energy-level dependent and was calculated for a

representative value of E = 2 E ; the quantity increases with
30

increase of E.

c) Signifies 5.69xl0
8

(
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Table 3. Calculated Values of k2/k1

T/K Model FE(m = 17.5) Model EB(m 17.5)

691 0.14 0.17

805 0.21 0.29

I
Ii

4
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Figure Captions

Figure 1. Plot of experimental and calculated values of P c(m) for

reaction (1) vs temperature (K) for l-iodopropane.

Experimental results: 0 , m = 5.9 ; 1, m = 17.5.

Calculated results: curve 1, strong collider; curve 2,

Models EB and GB for m = 17.5; curve 3, Model FG

for m = 17.5; curve 4, calculated and experimental values

for m = 5.9. Error bars show 95,' confidence level.

a

Figure 2. Plots of In A/A vs time for several runs, with and without

added butene. The ratio of rate constants in the two cases

is given in the figure;O, 626 K; A, 694 K; El, 828 K. Filled

symbols refer to butene runs. Time is in minutes at 626 K

and 694 K and in seconds at 828 K.

Figure 3. Plot of calculated values of log 1 , (kE/s-l) vs E/cm 1 for

reaction (1),(@),and reaction (2),(x).

4
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